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Abstract — We present MRiLab, a new comprehensive simulator 
for large-scale realistic MRI simulations on a regular PC equipped 
with a modern graphical processing unit (GPU). MRiLab 
combines realistic tissue modeling with numerical virtualization of 
an MRI system and scanning experiment to enable assessment of 
a broad range of MRI approaches including advanced 
quantitative MRI methods inferring microstructure on a sub-
voxel level. A flexible representation of tissue microstructure is 
achieved in MRiLab by employing the generalized tissue model 
with multiple exchanging water and macromolecular proton pools 
rather than a system of independent proton isochromats typically 
used in previous simulators. The computational power needed for 
simulation of the biologically relevant tissue models in large 3D 
objects is gained using parallelized execution on GPU. Three 
simulated and one actual MRI experiments were performed to 
demonstrate the ability of the new simulator to accommodate a 
wide variety of voxel composition scenarios and demonstrate 
detrimental effects of simplified treatment of tissue micro-
organization adapted in previous simulators. GPU execution 
allowed ~200x improvement in computational speed over standard 
CPU. As a cross-platform, open-source, extensible environment 
for customizing virtual MRI experiments, MRiLab streamlines 
the development of new MRI methods, especially those aiming to 
infer quantitatively tissue composition and microstructure.  

Index Terms — simulation, CEST, magnetization transfer, 
relaxometry, graphical processing unit (GPU) 

I. INTRODUCTION 

imulations constitute an essential part of the practice of 
magnetic resonance imaging (MRI) development as they 

allow for rapid prototyping and evaluation of MRI techniques 
in controlled conditions. Initially, analytical signal expressions 
based on simplified descriptions of MRI processes for proton 
isochromats were commonly used for pulse sequence 
optimization and image contrast manipulation. Over the years, 
increasing complexity of MRI systems, emergence of novel 
acquisition and reconstruction methods, and exploration of 
advanced MRI contrast mechanisms necessitated more realistic 
MRI simulations based on numerical modeling [1, 2]. In turn, 
this stimulated development of dedicated software solutions 
that take advantage of growing availability of high-performance 
computing to increase fidelity of MRI simulations. The existing 

simulators comprise largely distinct sets of functionalities 
including basic MRI simulations [3], simulations in the 
presence of various imaging system imperfections [4-6], and 
evaluation of object-field interactions for optimization of 
specific absorption rate (SAR), and multi-channel transmission 
[7]. Several simulators feature graphical development interface 
for pulse sequence design [5, 8-10] and MRI technique 
prototyping [11]. Overall, the developed software solutions 
have contributed to a notable progress toward more accurate 
simulations of MRI hardware and imaging processes in 
acceptable time, though several important limitations still exist.  

The major limitation of existing MRI simulators is the use of 
simplified tissue representations based on a model where all 
protons reside in a single compartment instead of a more 
realistic biological model where protons interact in multiple 
compartments. As a result, even for basic MRI pulse sequences, 
the MRI signal and contrast in tissues cannot be fully described 
by the single compartment models. Instead, more sophisticated 
tissue models with multiple exchanging proton pools are 
generally required for adequate tissue representation [12]. The 
multi-pool modeling becomes especially important for 
advanced MRI techniques that move beyond pathology 
visualization and aim to characterize tissue composition, 
microenvironment, and microstructure in a quantitative fashion 
[13]. Examples of these approaches include quantitative 
magnetization transfer (MT) imaging (qMTI) [14-17], multi-
component spin-lattice ( 1T ) and spin-spin ( 2T ) relaxometry 
[18-20], and chemical-exchange saturation-transfer (CEST) 
techniques [21]. Typically, these methods acquire several MR 
images with modulated contrast and utilize them to create 
quantitative or semi-quantitative parametric maps that 
characterize the tissue compartments. These parametric maps 
can often provide more biological or clinical information than 
conventional anatomical MRI images or basic quantitative MRI 
methods such as single-component 1T / 2T  maps. For example, 
multi-compartmental modeling of fat and water provides a 
quantitative indicators of fatty liver infiltration [22], while 
quantitative dynamic contrast-enhanced MRI characterizes 
permeability changes often present in cancerous lesions [23]. 
The multi-pool representations can also be applied to model and 
correct macroscopic effects such as partial voluming of 
cerebrospinal fluid (CSF) and neural tissues in brain imaging 
[24] or synovial fluid and cartilage in knee imaging [25]. While 
specialized software [26] is available for general analysis of 
some models, there is a lack of tools for full-scale MRI 
simulations with generalized models. Hence, realistic MRI 
simulations with such models can provide valuable means to 
facilitate development, evaluation, and understanding of 
quantitative MRI approaches. 

Excessive computational burden of full-scale three-
dimensional (3D) MRI simulations is already a pressing need 
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in the area of MR simulations today. Extra computational load 
associated with the desired multi-pool modeling is expected to 
further exacerbate this issue. Currently, the most commonly 
used approach to address the high computational burden is to 
parallelize computations on computer clusters [4-6, 27] which 
are expensive and not widely available.  

To meet the need to simulate more biologically relevant 
tissue models with realistic computational loads, we present a 
comprehensive MRI simulator, MRiLab, equipped with the 
generalized multi-pool exchange model for accurate MRI 
simulations. Inspired by an initial promise of Graphical 
Processing Units (GPU) to accelerate MRI simulations in a 
relatively inexpensive manner [28], we hypothesize that the 
computational complexity associated with the use of the 
generalized tissue model and realistic digital objects may be 
efficiently addressed by the GPU programming to allow 
simulating the complex phenomena on a personal computer 
(PC). To demonstrate the importance of advanced tissue 
modeling, we apply the new simulator to assess several 
quantitative MRI methods. Additionally, we evaluate the 
effects of simplified treatment of several such techniques by 
single-pool-based simulations. Finally, we utilize multi-pool 
modeling capabilities of MRiLab to simulate effects of fat-
water interference in macromolecular-rich tissues and validate 
them in a physical phantom. The MRiLab software is available 
at http://mrilab.sourceforge.net/ for free open-source access.  

II. THEORY 

A. Generalized Multi-Pool Exchange Model 

Realistic modeling of MRI signal from a given volume 
element (voxel) requires taking into account multiple sources 
of protons with measurable magnetization and their interaction 
with protons with non-measureable (rapidly decaying) 
magnetization within a particular tissue type, as well as 
presence of several tissue types within the voxel. To 
accommodate the wide variety of the voxel composition 
scenarios, we propose to employ a generalized multi-pool 
exchange model shown in Fig. 1. The model consists of FN  
free proton pools, all inter-connected by the magnetization 
exchange pathways, and BN  bound proton pools exchanging 
with the free proton pools. The free proton pools represent 
compartments with measurable transverse magnetization (e.g., 
water, fat, solute proton exchange compounds), while the bound 
proton pools are used to model semi-solid tissue 
macromolecular content non-visible on standard MRI (e.g., 
myelin, muscle fibers, collagen). A particular configuration of 
the generalized model (i.e., number of the pools, their type, and 
exchange pathways between them) can be chosen along with its 
parameters (relative fractions of the proton pools, 1T / 2T  
relaxation times, chemical shift spectra, and exchange rates) to 
represent a given tissue type. 

The response of the multi-pool spin system to the sequence of 
radiofrequency (RF) pulses and imaging gradients (i.e., MRI 
pulse sequence) can be described using the finite differential 
Bloch-McConnell equations in the rotating frame [29] for free 
proton pools, and MT saturation formalism [30] for bound 
proton pools. The full system of the equations can be written as: 

( )

, , ,
, ,

, , ,
,

2, , ,

2, , ,

, ,

,

, 0,
, ,

1, , ,

, ,, ,

/

/

 

i

x i x i x j
j F j i j F j i

y i y i y j
j F j i j F j i

z i i
z i z j

i j F j i j F j i

z

i
i

i i j j i

i i j j

i z j

i

i j j i

i
j B

j j i
j B

dM M B
dt

M T K M K M

M T K M K M

M M
K M K M

T

K M K M

γ

∈ ≠ ∈ ≠

∈ ≠ ∈ ≠

∈ ≠ ∈ ≠

∈ ∈

= ×

 
 − −
 
 

− −

−
−
− −



 

+

 
 
 






−

∑ ∑

∑ ∑

∑ ∑

∑ ∑


 

F1,...,i N

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

=

 (1) 

( )2,

, B

, , 0,
,

1,

, , ,

, ;

1,...,

z l z l l
l z l

l

l j zz j
j F j F

l j l

dM M M
W T t M

dt T

K M K M l N
∈ ∈

−

−
= − Ω

+ =∑ ∑
 (2) 

Here, the ith free and lth bound spin pools are each characterized 
by the equilibrium magnetization 0,iM  and 0,lM , and by the 

magnetization vectors , , ,, ,x i y i zi iM M M M =  


 and 

,0,0,l z lM M =  


, respectively. iB


 denotes an effective 

magnetic field experienced by the ith free spin pool, γ  is the 
gyromagnetic ratio, and ,i jK  is the rate of magnetization 

exchange from ith to jth pools. Next, W stands for the time-
dependent saturation rate of a bound proton pool: 
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Here, 1effB


 is an effective transmit field in the transverse plane, 

Ω  is RF offset frequency, ( )2,g TΩ  is macromolecular proton 
saturation line given in biological tissues and phantom media 
(e.g., agar, gelatin) by a super-Lorentzian, 
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Fig 1. Generalized multi-pool exchange model. The tissue is 
represented by several free (F) and bound (B) proton pools undergoing 
the magnetization exchange.  

http://mrilab.sourceforge.net/
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and a Gaussian, 
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respectively [31].  
We construct the terms iB


 in Eq. (1) to describe the applied 

magnetic fields, macroscopic/microscopic field variations, off-
resonance saturation, and chemical shifts (CS) of individual 
pools. The terms are specified on a per-pool basis and 
composed of multiple sub-fields as follows: 
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Here, ( )r x, y,z=  is the spatial position of the voxel to which 
the model is assigned, t  is time location in the pulse sequence, 
z  is the unit vector in z direction, G is a time-varying imaging 
gradient term, and maB∆  is a local macroscopic field offset that 
characterizes the main field imperfection within the voxel. The 
term ( )iC r  accounts for variations in the ith compartment 
response due to its chemical shift. To allow for flexible 
modeling of chemical shift effects (e.g., multi-peak fat spectra 
[32]), we represent this term by a discretized spectral model 
 ,,, , 1= ∆ =∑ ∑i i ki k i k

k k

C m c m  (7) 

Here, ,i kc∆  and ,i km  are kth spectral offset and amplitude, 

respectively. The last term in Eq. (6), miBδ , is a local 
microscopic field deviation with respect to maB∆  introduced 

for stochastic modeling of *
2T  decay along the lines of [5, 33, 

34]. In this approach, Eqs. (1)(2) are solved several times for 
the same voxel, with a value of ( )miB rδ   randomly drawn from 
the inverse Cauchy-Lorentz cumulative distribution as 

 ( ) ( )( )mi '
2

1 tan( 0.5 )B r N r
T

δ π
γ

 = − 
   (8) 

where ( )N r  is a random variable uniformly distributed in 

[0…1], and ' *
2 2 21 1 1T T T= + . The macroscopic voxel signal 

is calculated as an average of all such signals.  

B. Design of Anatomical Objects 

The generalized exchange model introduced in the previous 
section enables flexible modeling of signal from a single 
volume element. For imaging simulations, the anatomy of 
interest can be represented as a collection of such elements. In 
MRiLab, a particular tissue type (e.g., in case of brain, 
white/gray matter, lesions, cerebrospinal fluid (CSF), etc.) is 
related to a given voxel in the digital object by assigning the 
voxel a tissue-specific configuration of the generalized model 
and model parameter values. Partial voluming (PV) effect can 
be simulated by discretizing the object at finer levels than the 
image resolution targeted by the simulations. Alternative 
approach to simulate PV is to assign to the given voxel an 
aggregate model corresponding to all intra-voxel tissues.  

C. Simulation of Imaging Experiment 

In addition to tissue and anatomical models, the realistic 
simulations require setting up a virtual MRI system and a pulse 
sequence which conform to the existing physiological and 
technical limits of MRI scanning. MRiLab parameters 
specifying the scanning environment include the maps of main 
magnetic (B0), transmit, and receive fields, and parameters of 
imaging gradients. The pulse sequence is built graphically 
(Fig. 2) to define time-varying RF pulses and imaging gradients 
(all checked against the prescribed limits of the virtual MRI 
system) to obtain the desired image contrast, resolution, and 
acquisition trajectory. The pulse sequence can be augmented by 
programmable external events that can be activated at any 
prescribed time point to adjust the Bloch equation solution (e.g., 
setting transverse magnetization to zero to simulate spoiling) 
and to model real-time processes such as motion-induced object 
changes and changes in model parameters (e.g., due to contrast 
agent propagation, respiration-induced B0 variations, etc.).  

Once the digital object, scanner environment, and pulse 
sequence are set up, the simulator begins by performing the 
solution of the multi-pool exchange ordinary differential 
equations (ODE) (Eqs. (1)(2)). Our approach is to utilize a 
discrete time solution of the Bloch equation by means of 
rotation and exponential scaling matrices at each time point 
throughout the prescribed pulse sequence [35]. Such approach 
was also employed in several single-component simulators 
[4],[28]; it does not require the use of dedicated CPU-optimized 
numerical ODE solvers that were engaged in Ref. [5]. As the 
solutions for the elements in the digital object are independent 
of each other, the performance of such simulations benefits 
significantly from the remarkable parallelization capabilities of 
a GPU. Therefore, we utilized Compute Unified Device 
Architecture (CUDA) model (Nvidia Inc, Santa Clara, CA, 
USA) to gain computational power sufficient for manipulation 
of a large spin matrix of the generalized multi-pool exchange 
model for a large number of the digital object voxels 
simultaneously. In MRiLab, GPU runtime setup is optimized 
based on the object size and GPU card specifications. Namely, 
several computational blocks are created to allow maximized 
usage of GPU streaming multi-processers. Each block is 
configured to contain the maximum possible number of threads 
(one thread performing calculations for only one voxel) for the 

Fig. 2. An example of a hierarchical balanced steady state precession 
(bSSFP) sequence tree structure with the corresponding generated 
waveforms. Four separate RF sources in the tree permit modeling of 
parallel RF transmission (for display purposes, only one RF source 
within one TR is shown). The pulse sequence is built from tunable 
macros which provide modularization and reusability. 
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block’s register pool of a given CUDA compilation (63 
registers/thread in our case, which led to 20-65 blocks with 483-
500 threads each in the simulations presented in the paper). 
GPU global memory is reserved to store object information and 
current spin status. In each step, the central processing unit 
(CPU) loads the GPU shared memory of each block with the 
next pulse sequence segment until the memory is filled or pulse 
sequence external event is detected. The equations are then 
solved for the given segment for all voxels assigned to the 
block's threads. Upon completion, the GPU blocks are updated 
with new voxels, and the process continues until ODEs are 
solved for all voxels. At this point, if the current pulse sequence 
segment ends by an external event, CPU updates GPU global 
memory to reflect the changes specified by the event, and the 
algorithm proceeds to the next sequence segment. The 
cumulative signal from all the voxels forms a simulated k-space 
dataset which can be further processed to reconstruct final 
images using built-in or external image reconstruction modules. 

III. METHODS AND RESULTS 

The frontend of MRiLab (main console, design and 
visualization tools) was implemented in Matlab (MathWorks 
Inc, Natick, MA, USA). The computational kernels were 
implemented in C++ and interfaced with Matlab functions. All 
simulations were performed on a desktop computer (Intel Xeon 
W3520 quad-core CPU with 12 GB DDR3 RAM and Nvidia 
Quadro K4200 graphic card (1344 CUDA cores, 4GB GDDR5 
RAM)) running a 64-bit Windows 7 operation system. In the 
simulations, the number of realizations in Eq. (8) was set to 
100. All experiments were performed with identically 
independently distributed, complex-valued Gaussian noise 
added to the simulated k-space data. 

We applied the multi-pool simulator to assess several 
quantitative methods which either cannot be evaluated or can 
be evaluated only approximately by single-component MRI 
simulators. These simulations entailed several non-trivial 
configurations of the generalized exchange model (Fig. 3) 
described in the next sections.  

A. Multicomponent 2T  Relaxometry 

In the first study, we evaluated the effects of simplified 
modeling of multi-component 2T  relaxometry on tissue 
microstructure characterization. Multi-component 2T  
relaxometry separates MRI signal into slow and fast relaxing 
components, which are often related to biologically important 
microstructural features. For example, in neural tissues, the 
short 2T  ( 2,sT ) signal originates from water trapped in bi-layers 

of myelin (the protective sheath critical for neural fiber 
functioning), and the long 2T  ( 2,lT ) signal corresponds to 
intra/extracellular (IC/EC) water [18]. The ratio of short 2T
component to the total water signal, the myelin water fraction 
(MWF), can be used for assessment of myelin, which is a major 
site for pathology in a variety of disorders [36].  

MWF imaging can be accurately modeled using two water 
proton pools connected by a diffusion-driven magnetization 
exchange (Fig. 3a), whose rate depends on the thickness of 
myelin sheath [37]. The single-component simulators can 
implement this model only approximately by specifying two 
isolated (non-exchanging) spins with different 2T  values in a 
voxel. To illustrate the importance of multi-pool modeling 
implemented in our simulator, we evaluated the effect of this 
simplification on MRI signal and MWF quantification. The 
simulations were performed using the full (Fig. 3a) and the 
simplified (two water pools, no exchange) models in a 
cylindrical object for multiple spin echo sequence (see 
Appendix for sequence and model parameters).  

Figure 4a demonstrates that the spin echo signal obtained by 
the approximate model (isolated spins with exchange rate 

0K = ) deviates significantly from the signal obtained with 
consideration of inter-compartmental exchange (Fig. 3a). The 
deviation grows with K . Figure 4b demonstrates that ignoring 
the magnetization exchange in standard simulators adversely 
affects estimation of 2T  components and MWF. In this 
simulation, the simplified (no-exchange) model was fit to 
signals generated with the full model. MWF and 2T  of both 
water pools become underestimated, with relative bias growing 
together with inter-compartmental exchange. The relative 
MWF errors of the non-exchanging model are [-8, -28, -67] % 
for K = [2, 4, 25] s-1, which is in agreement with the previously 
reported MWF errors [37]. Therefore, the use of simplified (no 
exchange) model realized in standard simulators can neither 
represent variations in the image contrast due to variations in 
the exchange rate (e.g., with myelin thickness [37]) nor 
accurately simulate MWF mapping experiments. 

B. Quantitative MT Imaging (qMTI) 

In this numerical experiment, we evaluated the ability of 
MRiLab to simulate quantitative MT-based assessment of 
tissue macromolecules with non-measurable (i.e., rapidly 
decaying) transverse magnetization. MT effect is observed in 
MR images when magnetization of macromolecular protons is 

Fig. 3. Configurations of the generalized exchange model to represent 
tissue response in (a) multi-component T2 relaxometry for myelin 
water imaging, (b) quantitative MT imaging, (c) gagCEST imaging, 
and (d) MT imaging in the presence of fatty tissue infiltrations. 

Fig. 4. Dependence of spin echo signal (a) and apparent MWF and T2 
values (b) on the exchange rate K. In (b), the dashed lines show true 
parameter values and markers correspond to K values from (a). The 
deviations of signal and parameter values grow with the exchange rate. 
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selectively saturated by off-resonance RF pulses. The saturation 
propagates to water protons through magnetization exchange 
thereby causing attenuation of measurable MRI signal. 
Consequently, the tissue in the MT experiment can be 
represented as exchanging macromolecular (bound) and free 
(water) proton pools (Fig. 3b) [30]. The key parameter of the 
model, macromolecular proton fraction (MPF), is highly 
sensitive to many types of macromolecules including myelin 
and collagen, which can be affected by pathology in a variety 
of diseases (e.g., myelin in multiple sclerosis [38, 39], collagen 
in osteoarthritis [40]). Simulating the MT phenomenon requires 
dedicated modeling of macromolecular (bound) protons and 
their interaction with tissue water (Eq. (2)) which is not possible 
in standard simulators based on single-component models. 

We simulated MPF mapping using a fast qMTI protocol 
known as modified cross-relaxation imaging (mCRI) [16]. The 
mCRI estimates MPF from a series of MT-weighted, variable 
flip angle (VFA) spoiled gradient echo (SPGR) images using 
approximate analytical expressions. The protocol also acquires 
a flip angle map using Actual Flip Angle (AFI) pulse sequence 
[41] for correction of local excitation flip angle and MT 
saturation power in the model fit. All acquisitions were 
simulated at 3T for a brain template with MS lesions [42] (Fig. 
5) at two resolutions, one with the acquisition matrix matching 
that of the digital model (200x160x60), and the other with a 
coarser acquisition matrix (128x96x20) to simulate PV effects 
(see Appendix for the full list of simulation parameters). B1 
field was simulated by an MRiLab module for an eight-channel 
transmission coil composed of Biot-Savart linear filaments. 
Flip angle and MPF maps were calculated fitting AFI [41] and 

mCRI [16] equations using in-house software.  
Figure 6 shows ground truth flip angle (FA) map, and the 

map estimated from MRiLab-simulated AFI sequence. The 
maps agree well with each other resulting in normalized root-
mean-square-error = 0.9% over the brain area, which is 
consistent with the previously observed flip angle mapping 
errors due to approximations inherent to the AFI technique [41]. 
Figure 7 shows results of simulated MPF mapping, which 
provides a measure of macromolecular protons invisible with 
conventional MRI techniques. The macromolecular proton 
modeling implemented in MRiLab yielded MPF estimation 
highly consistent with ground truth. The values demonstrated 
minor biases (0.6%, 1.0%, 0.5% errors in gray matter (GM), 
white matter (WM), and lesions, respectively), partially due to 
analytical approximations used in mCRI method and 
propagation of the FA estimation error. Partial voluming of 
WM and GM cause their MPF histogram peaks (Fig. 7b) to 
deviate significantly from the true values. Remarkably, partial 
voluming between GM and CSF manifests itself as a long 
histogram tail in the lower MPF range, which is consistent with 
artificial reduction of MT-based parameters in the outer GM 
cortex observed experimentally [43]. The errors are also 
elevated in the voxels corresponding to PV between CSF and 
brain (MPF error image in Fig. 7a) indicating that models even 
more complex than two-pool MT model are required to account 
for partial voluming with CSF [24].  

C. Glycosaminoglycan CEST Imaging 

Glycosaminoglycan CEST (gagCEST) imaging is a method 
to assess cartilage for the presence of glycosaminoglycan 
molecules [44], whose depletion is an early marker of 
osteoarthritis (OA). The protons in hydroxyl (-OH) groups of 
the glycosaminoglycan molecules are chemically shifted by +1 
ppm with respect to the main water resonance. The off-
resonance saturation can be applied at the shifted frequency to 

Fig. 7. Results of simulation-based evaluation of MPF mapping. 
(a) Example simulated image, estimated MPF, and MPF errors. 
(b) MPF histograms. Vertical lines correspond to the true MPF 
values. Note different locations of the histogram modes for 
simulations with and without PV. 

Fig. 5. (a) Digital object used in qMTI simulation experiments. Brain 
parenchyma is composed of white and gray matter, and lesions. 
(b) Ground truth MPF.  
 

Fig. 6. True flip angle (FA) (a) and simulated FA (b) maps. The maps 
are shown in units relative to the nominal (operator-prescribed) value. 
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selectively saturate protons in OH-groups, which in turn 
saturate water protons through the chemical exchange. The 
presence of the molecules can be detected by analyzing the 
chemical-shift induced asymmetry of the signal (S) at positive 
(+σ) and negative (-σ) off-resonance saturation frequencies (Z-
spectrum) calculated as 

 ( ) ( )( ) 100%
( )

S SgagCEST
S
δ δδ

δ
− − +

= ×
−

 (9) 

To investigate the formation of gagCEST asymmetry, we 
simulated in MRiLab gagCEST imaging at 7T. The model 
configuration consisted of three exchanging pools (Fig. 3c) 
representing bound protons in collagen, tissue water protons, 
and free protons in the hydroxyl groups (see the Appendix for 
simulation parameters). Additionally, we simulated the 
gagCEST asymmetry using an approximate model consisting of 
two non-exchanging free proton pools (-OH and water), which 
can be implemented in standard simulators.  

The simulations with the three pool gagCEST model (Fig. 
3c) yielded Z-spectra and its asymmetry plot typical for 
experimental gagCEST data [44]. All spectra have slight 
asymmetry around 1 ppm (Fig. 8a), especially pronounced on 
the asymmetry plot (Fig. 8b), which signifies the presence of 
hydroxyl protons exchanging with the free water. The 
maximum value of the asymmetry is remarkably different 
between the models ranging from ~1% (simplified two-pool 
model) to ~23% (full model). Simulating the phenomenon 
using the simplified model is equivalent to direct detection of -
OH groups, which is not feasible in vivo due to their scarcity 
(200-300mM) [44, 45]. Full modeling of the saturation transfer 
in MRiLab simulates their effect on much more abundant, and 
hence detectable, water protons, and creates a more realistic 
estimation of asymmetry levels observed for -OH 
experimentally [44-47]. 

D. MT Imaging in the Presence of Fat 

In this experiment, we coupled advanced multi-pool 
modeling capabilities of MRiLab with a physical phantom 
measurements to elucidate effects of fat-water interference in 
macromolecular-rich tissues, which were experimentally 
shown to obfuscate interpretation of MT-weighted MRI signal 
[48]. The pure fat and water mixtures (e.g., in breast and liver 
tissues) can be represented in single-component simulators 
thanks to the absence of efficient mechanisms of magnetization 
exchange between fat and water protons [49]. Similarly, 
interactions between water and macromolecules can be 
evaluated using recently proposed qMTLab software [26]. 
However, the simultaneous presence of MT-inducing 
macromolecules, water, and fat makes these standard models 
insufficient. Instead, a more advanced three-pool model 
comprising exchanging macromolecules and water, and non-
exchanging fat (Fig. 3d) [49] is necessary to describe such 
tissues, which can be instantiated in MRiLab.  

The phantoms were prepared by mixing the heated 2% agar 
water solution with peanut oil to yield fat fractions of 0%, 30% 
and 50%. The MR images were simulated for the digital objects 
and the pulse sequence identical to those used in real MRI 

experiments (see Appendix for model and pulse sequence 
parameters). In both real and simulated cases, magnetization 
transfer ratio (MTR) was calculated for each echo time from 
images with (MTon) and without (MToff) MT saturation: 

 off on

off

( - )
  100%

MT MT
MTR

MT
= ×  (10) 

Because of low MTR-to-noise ratio in phantom data (ranging 
from 0.95 to 4.2), MTon and MToff were pre-processed prior to 
MTR calculation using local polynomial filter [50]. The 
agreement between experiment and simulated results was 
determined in Bland-Altman analysis (±1.96 standard deviation 
of the mean difference was as limit of agreement). The bias 
between simulations and experiment was examined using the 
one-sample t-test for the differences between paired 
measurements with the significance level defined as p<0.05.  

Figure 9 shows measured and MRiLab-simulated MTR 
images of agar/water/fat phantoms. Figure 10a compares 
corresponding ROI-averaged MTR values. Simulations with 
the standard two-pool MT model (i.e., with 0% fat) yield stable 
signal across different echo times. Experimental data reveal that 
the presence of fat leads to a fluctuating MTR, which cannot be 
explained by the standard model (Fig. 10a) highlighting 
difficulties in interpretation of MT-based macromolecular 
markers in tissues containing fat. At the same time, the three-
pool model describes well the echo-time and fat-content 
dependent superposition of chemically shifted fat signal with 
MT-attenuated water signal. The three-pool simulations agree 
well with the experimental observations as revealed by narrow 

Fig. 8. Comparison of gagCEST simulations using simplified (two 
non-exchanging pools, dashed lines) and full (three exchanging pools, 
solid lines) models. (a) gagCEST Z-spectra and (b) the asymmetry 
plots simulated for simplified and full models for several off-resonance 
saturation powers (αCEST=500°, 1000°, 2500°). 
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limits of agreements (-0.77%, +0.90%) and non-significant bias 
(0.06 ± 0.43%, p = 0.68) between simulation and experiment 
(Fig. 10b). This agreement supports validity of the three-pool 
MT model with fat component (Fig. 3d) for interpretation of 
MT-weighted signal in tissues containing a mixture of fat, 
water, and macromolecules [49], which cannot be otherwise 
accomplished by a standard two-pool MT model.  

E. Computational Performance 

We first compared speeds of GPU-based and standard CPU-
based multi-threaded parallel computations in MRiLab (bSSFP 
scanning of a brain phantom [42] with TR/TE = 6/3ms, α = 15°, 
acquisition matrix 200x160, 30 slices, single water component). 
The CPU code was written in C using OpenMP technique for 
multi-threaded execution, and two matrix processing libraries 
(IPP (Intel Inc, Santa Clara, CA, USA) and Framewave 
(Advanced Micro Devices Inc, Sunnyvale, CA, USA) for 
accelerated CPU-based matrix operations. Next, we compared 
computational times for simulating this pulse sequence with all 
model configurations described in studies 1-4 and several 
acquisition matrix sizes. All simulations were repeated 10 times 
and the average simulation time was recorded.  

Table 1 compares computational times of CPU-based and 
GPU-based calculations in MRiLab. GPU-based parallelization 
resulted in a nearly 200-fold improvement in computational 
speed compared to standard single threaded CPU computations, 
with the improved speed not achievable with standard multi-
threading available on a regular personal computer. Table 2 
shows computational times for different models. The 
computational times increased with the model complexity from 
qMTI and multi-component 2T  relaxometry (two pools, one 
exchange pathway) to MT/fat imaging (three pools, one 
exchange pathway) to gagCEST imaging (three pools, two 
exchange pathways).  

IV. DISCUSSION 

There exist several key distinctions between proposed 
MRiLab and existing MRI simulators. In MRiLab, the 
generalized multi-pool exchange model is combined with a 
computational engine designed for large scale, high fidelity 
simulations of MRI processes (please see the online user 
manual at http://mrilab.sourceforge.net/ for the full description 
of MRiLab functionality). The ability to simulate actual 
imaging sets MRiLab apart from software that evaluate multi-
pool systems in a single-voxel regime (e.g., two-pool MT 
modeling software [26]), and makes MRiLab particularly 
appealing for evaluation of conventional and quantitative 
methods in realistic imaging conditions. Next, while the single-
component imaging simulators may imitate multi-component 
modeling by accommodating spins of several types per imaging 
voxel, such approach does not take into account exchange 
processes and cannot represent macromolecular tissue content. 
On the other hand, MRiLab numerically solves Bloch equations 
for the general tissue model that encompasses multiple 

Fig. 9. MTR in fat+agar phantoms at different echo times calculated 
by simulation (a) and measured at 3.0T (b). Note significant variability 
of MTR with fat fraction and echo time.  

Fig. 10. (a) Simulated and measured ROI-averaged MTR values agree 
well with each other for a range of echo times and fat fraction. (b) The 
Bland-Altman plot for experimental and simulated MTR values.  

TABLE I 
MRILAB SIMULATION TIMES FOR GPU AND MULTI-THREADING 

CPU PARALLELIZATION 
CPU 

(Intel Xeon W3520) 
GPU 

(Quadro 
K4200) 1 thread 2 threads 4 threads 8 threads 

83402 sec 42005sec 20700 sec 10412 sec 419 sec 
 

 

TABLE II 
SIMULATION TIMES FOR SEVERAL CONFIGURATIONS OF THE 

GENERALIZED MODEL AND K-SPACE MATRIX SIZES 

Model Type 
k-space Matrix Size 

64×64 128×128 256×256 
Single Pool 102 sec 293 sec 921 sec 

qMTI 171 sec 478 sec 1496 sec 
Multi-Component T2 183 sec 614 sec 1612 sec 

MT + fat 235 sec 651 sec 2142 sec 
gagCEST 241 sec 699 sec 2214 sec 

 
 
 
 
 
 

http://mrilab.sourceforge.net/
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exchanging water and macromolecular pools and thus avoids 
these limitations. Similar to other comprehensive MRI 
simulators [4, 5], MRiLab resolves the computational 
challenges associated with large-scale 3D simulations and 
numerical solution of Bloch equations using parallel 
computing. However, instead of engaging expensive computer 
cluster hardware, it relies on relatively cheap personal 
computer-based GPU, which, to the best of our knowledge, was 
previously used only in a single-component MRI simulator 
[28]. Despite lower computational power of a GPU core 
compared to a CPU core, the ample number of cores in GPU 
and high amenability of MRI simulations to parallelization 
allow achieving accelerations on two orders of magnitude 
relative to a single-thread CPU implementation (Table 1). Our 
experiments demonstrated that GPU acceleration is also 
capable of tackling the extra computational complexity 
associated with the incorporation of flexible multi-pool models 
into the MRiLab simulation pipeline (Table 2).  

We demonstrated utility of multi-component MRiLab 
simulations with several quantitative MRI experiments that are 
not assessable by standard single-component MRI simulators. 
In addition to studying the limitations of simplified modeling 
with single-component simulators for gagCEST and multi-
component 2T  mapping, we applied MRiLab to confirm the 
accuracy of modified cross-relaxation imaging (mCRI), an 
efficient qMTI technique for mapping myelin in neural tissues 
and collagen in cartilage, which was previously evaluated only 
experimentally [16]. Furthermore, multi-component MRiLab 
simulations can provide explanations for variations of MT 
contrast with echo time and fat fraction in the presence of tissue 
fat, which is not possible using single component models. 
Previously, these effects were observed in liver MT imaging 
[48]. Successful comparison of MRiLab predictions with actual 
MRI measurements in phantoms with known fat-tissue 
composition confirmed the necessity of the three pool model 
(Fig. 3) for simulation of MT imaging in the presence of fat.  

The utility of fast multi-pool simulations for quantitative 
imaging extends well beyond the example applications 
provided in this manuscript. MRI simulations with the multi-
pool models can be valuable in many stages of development of 
quantitative techniques, including preliminary concept 
evaluation, evaluation of expected imaging performance, and 
assessment of the dependence of the accuracy and precision of 
model outputs on imaging and reconstruction parameters. 
Furthermore, the existing MRiLab functionality allows the 
simulator to be used for an even wider variety of simulations 
tasks. For example, external events implemented in MRiLab 
can be used to perform a dynamic update of the model 
parameters. This mechanism can be utilized to simulate tissues 
undergoing dynamic changes; for example, in dynamic 
contrast-enhanced imaging, which uses two-pool contrast 
kinetics modeling to quantify perfusion/permeability [23]. 

From software design perspective, MRiLab builds on the 
ideas of pipeline processing [11] and modularization [51], 
which makes MRiLab simulation structure flexible and 
extensible. The extensibility is particularly facilitated by the use 
of Extensible Markup Language to store simulation 

information, to register new modules, and to organize 
communication between predefined macros and external 
programs. The latter may be straightforwardly applied to create 
a communicating pipeline for incorporating functions of 
external programs. The combination of high computational 
efficiency, extensibility, and open-source concept makes 
MRiLab an appealing platform for further expansion by 
existing or future models of MRI processes.  

Similar to any existing MRI simulator, MRiLab may be 
limited by simplified description of physical processes that are 
problematic to model numerically using currently available 
computational power. For example, direct numerical simulation 
of diffusion effects based on random-walk modeling during the 
pulse sequence evolution may require exhaustive 
computational power. In addition, in all shown experiments, 
spoiling of the transverse magnetization was achieved through 
an external event zeroing the transverse magnetization, which 
may not be sufficient to model real experiments in which no 
special arrangements are made in the pulse sequence design to 
achieve complete spoiling [52]. In these cases, a more accurate 
approach to model the spoiling gradient effects on the intra-
voxel transverse magnetization is through finer discretization of 
the digital object grid. This approach, however, may reach 
memory and computational feasibility limits, as MRiLab 
simulations are primarily restricted by the available memory 
size and the resources each thread can assess (i.e., shared 
memory and registers). However, rapid advances of new GPU-
based methods (e.g. multiple-GPU and GPU cluster) [53] and 
faster and more powerful GPU devices could be used in the 
future to further improve the time-efficiency of the MRI 
simulation and to extend the simulation complexity in MRiLab 
to address these and other complex simulation problems. 
Finally, as studies in this manuscript were tested under CUDA 
2.0, the backward compatibility to earlier versions of CUDA 
model is likely to require source code modification. Future 
development will include providing the support for freely 
available programming platforms such as NumPy/SciPy [54] to 
broaden the availability of MRiLab to the scientific community.  

V. CONCLUSION 
In this paper, we presented a comprehensive, high-

performance, open-source MRI simulation tool capable of 
realistic simulations of the whole MRI experiment with flexible 
representation of tissues by multi-pool exchange models. We 
demonstrated the feasibility of such full-scale MRI simulations 
on a regular personal computer equipped with relatively 
inexpensive GPU hardware. The MRiLab simulation 
environment can serve as a flexible, readily available, 
expandable platform for convenient customizing virtual MRI 
experiments to streamline the development of new MRI 
methods. This simulator may be particularly useful for 
accelerated development and accurate evaluation of new MRI 
approaches designed to assess tissue composition and 
microstructure in a quantitative fashion.  
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APPENDIX 

A. Multicomponent 2T  Mapping  
Images at several echo times were obtained simulating 

multiple spin echoes for the model in Fig. 3b. The simulations 
were performed in cylindrical objects each assigned an 
individual exchange rate value. The model (Fig. 3a) and pulse 
sequence parameters were identical to ones used in [37]. Model 
parameters: 2,sT / 2,lT  = 15/65ms, MWF = 39%, myelin water 

exchange rate K  = [0, 2, 8, 25] s-1. Multiple spin echo 
sequence: TR = 6s, TE = [5, 10, 15, …, 150] ms. Other details: 
object size 100x100x30 (number of voxels 300000), k-space-
matrix size 60x60, pulse sequence time steps 241560, total 
simulation time 176 sec. 

B. Quantitative MT Imaging  
The two-pool MT model (Fig. 3b) and pulse sequence 

parameters were similar to the ones reported in [16]. All 
datasets were simulated in axial plane with field of view = 
20x16cm. Model parameters: Gray matter: 1,wT = 1.4 s, 2,wT = 

100 ms, 1,bT = 1 s, 2,bT = 10.21 μs, w,bK = 1.57 s-1, MPF = 8.9%. 

White matter: 1,wT = 1s, 2,wT = 70ms, 1,bT = 1s, 2,bT = 9.84μs, 

w,bK = 2.70s-1, MPF = 13.6%. MS lesions: 1,wT = 1.3 s, 2,wT = 

30 ms, 1,bT = 1 s, 2,bT = 9.84 μs, w,bK = 2.70 s-1, MPF = 8.5%. 
MT-SPGR sequence: TR/TE = 37/3.5 ms, excitation flip angle 
α=15°, a 18ms Fermi MT pulse, all combinations of Ω = 2.5, 
10, 18, 26 kHz and αMT = 850°, 1400°. Same sequence was used 
to simulate variable flip angle data with α = 6°, 15°, 35°, 50°, 
Ω = 250 kHz.  AFI sequence: TR1/TR2/TE = 37/185/2.3 ms, α = 
55°. Other details (cases without/with partial voluming effect 
(no-PVE/PVE)): object size 200x160x60 (number of voxels 
1920000), 3D simulations with k-space-matrix sizes 
200x160x60 (no-PVE) and 128x96x20 (PVE), pulse sequence 
time steps 65484900 (no-PVE) and 11524500 (PVE), total 
simulation times 120080 sec (no-PVE) and 23264 sec (PVE). 

C. gagCEST Imaging 
The gagCEST model (Fig. 3c) and pulse sequence 

parameters were similar to the ones reported in previous 
cartilage imaging studies [44, 55]. Model parameters: Two-
pool MT: 1,wT =1s, 2,wT =35ms, 1,bT =1s, 2,bT =7μs, w,bK =8s-

1, MPF=15% [40, 56]. Glycosaminoglycan hydroxyl (-OH) 
pool: proton fraction 1%, chemical shift δ =+1.0ppm, 1,-OHT

=1s, 2,-OHT = 90ms, w,-OHK =12s-1. MT-SPGR sequence: 
TR/TE= 200/8ms, α = 10°, a 100ms Hanning-windowed 
Gaussian MT pulse, saturation flip angles αCEST=[500°, 1000°, 
2500°], Ω varying linearly in range [-4.0…4.0] ppm. The 
spectra were normalized to signals without saturation (Ω=250 
kHz). Other details: object size 100x100x30 (number of voxels 
300000), 2D simulations with k-space-matrix size 60x60, pulse 
sequence time steps 10606200, total simulation time 4800 sec. 

D. MT Imaging in the Presence of Fat 
Imaging was performed on a 3T MRI scanner (MR750, GE 

Healthcare, Waukesha, WI) using multi-echo MT-SPGR 

sequence. The parameters for model in Fig. 3d were selected 
according to the used fat fractions and previously reported 
parameters for fat [32] and 2% agar [14]. Model parameters: 
Agar: 1,wT = 2.38 s, 2,wT = 56.4 ms, 1,bT = 1 s, 2,bT = 15.3 μs, 

w,bK = 0.734 s-1, MPF = 0.66%. Fat: 1,fT = 280 ms, 2,fT = 55ms, 
6-peak fat spectra, peak fractions/chemical shifts [8.7/-3.1, 
69.3/-2.75, 12.8/-2.11, 0.4/-1.57, 3.9/-0.32, 4.8/0.49] %/ppm. 
MT-SPGR sequence: TR = 40 ms, TE = [1.37, 2.78, 4.19, 5.61, 
7.02, 8.43, 9.84, 11.25] ms, excitation angle α = 13°, 18ms 
Fermi MT pulse, αMT = 1000°, Ω = 2.5 kHz and 250 kHz. Other 
details: object size 195x161x10 (number of voxels 313950), 2D 
simulation with k-space-matrix size 100x80, pulse sequence 
time steps 45500, total simulation time 340 sec. 
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